383 research outputs found

    Feedback Linearization Based Nonlinear Control of SynRM Drives Accounting for Self- and Cross-Saturation

    Get PDF
    This article proposes a nonlinear controller based on feedback linearization (FL) for synchronous reluctance motor (SynRM) drives which takes into consideration the magnetic saturation. The proposed nonlinear FL control based control technique has been developed starting from the theoretical definition of an original dynamic model of the SynRM taking into consideration both the self- and the cross-saturation effects. Such a control technique permits the dynamics of both the speed and axis flux loops to be maintained constant independently from the load and the saturation of the iron core in both constant flux and variable direct axis flux operating conditions. Finally, sensitivity of the performance of the proposed FL control versus the variation of the main motor parameters has been verified. The proposed technique has been tested experimentally on a suitably developed test setup. The proposed FL control has been further compared with the classic field-oriented control (FOC) in both constant flux and variable flux working conditions

    Space-vector State Dynamic Model of the SynRM Considering Self, Cross-Saturation and Iron Losses and Related Identification Technique

    Get PDF
    This article proposes a space-vector dynamic model of the Synchronous Reluctance Motor (SynRM) including both self-saturation, cross-saturation effects, and iron losses. The model is expressed in state form, where the magnetizing current has been selected as a state variable. The proposed dynamic model is based on an original function describing the relationship between the stator flux and the magnetizing current components, improving a previously developed magnetic model. Additionally, the proposed model includes, besides the magnetic saturation, also iron losses. The proposed model requires 11 coefficients, among which 6 describe the self-saturation on both axes and 5 describe the cross-saturation. This paper presents also, from one side a technique for the estimation of the parameters of the magnetic model, and from the other side a purposely developed methodology for measuring the iron losses resistance as well as its variation with the speed and stator current amplitude. The proposed parameter estimation technique has been tested in both numerical simulation and experimentally on a suitably developed test set-up and the proposed model has been thus validated experimentally

    Adaptive Feedback Linearization Control of SynRM Drives With On-Line Inductance Estimation

    Get PDF
    This article proposes an adaptive input-output Feedback Linearization Control ( FLC ) techniques for Synchronous Reluctance Motor ( SynRM ) drives, taking into consideration the iron losses. As a main original content, this work proposes a control law based on a new dynamic model of the SynRM including iron losses as well as the on-line estimation of the static inductances. The on-line estimation of the SynRM static inductances permits to inherently take into consideration the magnetic saturation phenomena occuring on both axes. As a major result, it permits a null stator current steady state tracking error even with a proportional derivative controller. The estimation law is obtained thanks to a Lyapunov-based analysis and thus the stability of the entire control system, including the estimation algorithm, is intrinsically guaranteed. The proposed adaptive FLC technique, has been tested experimentally on a suitably developed test set-up, and compared experimentally with its non-adaptive versions in both tuned and detuned working conditions. Moreover, a sensitivity analysis of the performance of the adaptive FLC to the variations of the stator resistance at low speed has been made. Finally, an analysis of the effects of the iron losses on the control performance and stability at high speed in the field weakening region at medium/high loads has been made

    Modeling and performance assessment of the split-pi used as a storage converter in all the possible dc microgrid scenarios. Part II: Simulation and experimental results

    Get PDF
    Bidirectional DC/DC converters such as the Split-pi can be used to integrate an energy storage system (ESS) into a DC microgrid providing manifold benefits. However, this integration deserves careful design because the ESS converter must behave like a stiff voltage generator, a non-stiff voltage generator, or a current generator depending on the microgrid configuration. Part I of this work presented a comprehensive theoretical analysis of the Split-pi used as an ESS converter in all the possible DC microgrid scenarios. Five typical microgrid scenarios were identified. Each of them required a specific state-space model of the Split-pi and a suitable control scheme. The present paper completes the study validating the theoretical analysis based on simulations and experimental tests. The chosen case study encompassed a 48 V, 750 W storage system interfaced with a 180 V DC microgrid using a Split-pi converter. It can represent a reduced-power prototype of terrestrial and marine microgrids. A prototypal Split-pi converter was realized in the lab, and several experimental tests were performed to assess the performance in each scenario. The results obtained from the experimental tests were coherent with the simulations and validated the study

    Modeling and performance assessment of the split-pi used as a storage converter in all the possible dc microgrid scenarios. Part i: Theoretical analysis

    Get PDF
    The integration of an electrical storage system (ESS) into a DC microgrid using a bidirectional DC/DC converter provides substantial benefits but requires careful design. Among such converter topologies, the Split-pi converter presents several merits at the cost of non-isolated operation. However, the few works in the literature on the Split-pi presented only closed-loop control with a single control loop; furthermore, they neglected the reactive components’ parasitic resistances and did not perform any experimental validation. This work aimed at investigating the use of the Split-pi converter as a power interface between an ESS and a DC microgrid. Five typical microgrid scenarios are presented, where each of which requires a specific state-space model and a suitable control scheme for the converter to obtain high performance. In this study, two different state-space models of the converter that consider the parasitic elements are presented, the control schemes are discussed, and criteria for designing the controllers are also given. Several simulations, as well as experimental tests on a prototype realized in the lab, were performed to validate the study. Both the simulation and experimental results will be presented in part II of this work. The proposed approach has general validity and can also be followed when other bidirectional DC/DC converter topologies are employed to interface an ESS with a DC microgrid

    Modeling and Experimental Validation of a Voltage-Controlled Split-Pi Converter Interfacing a High-Voltage ESS with a DC Microgrid

    Get PDF
    The Split-pi converter can suitably interface an energy storage system (ESS) with a DC microgrid when galvanic isolation is not needed. Usually, the ESS voltage is lower than the grid-side voltage. However, limitations in terms of the ESS current make the use of a high-voltage ESS unavoidable when high power levels are required. In such cases, the ESS voltage can be higher than the microgrid voltage, especially with low microgrid voltages such as 48 V. Despite its bidirectionality and symmetry, the Split-pi exhibits a completely different dynamic behavior if its input and output ports are exchanged. Thus, the present work aims to model the Split-pi converter operating with an ESS voltage higher than the grid-side voltage in three typical microgrid scenarios where the controlled variable is the converter's output voltage. The devised state-space model considers the parasitic elements and the correct load model for each scenario. Furthermore, it is shown that the presence of the input LC filter can make the design of the loop controllers more complicated than in the case of a lower ESS voltage than the grid-side voltage. Finally, the study is validated through simulations and experimental tests on a lab prototype, and a robustness analysis is performed

    Open Inflationary Universes in the Induced Gravity Theory

    Full text link
    The induced gravity theory is a variant of Jordan--Brans--Dicke theory where the `dilaton' field possesses a potential. It has the unusual feature that in the presence of a false vacuum there is a {\em stable} static solution with the dilaton field displaced from the minimum of its potential, giving perfect de Sitter expansion. We demonstrate how this solution can be used to implement the open inflationary universe scenario. The necessary second phase of inflation after false vacuum decay by bubble nucleation is driven by the dilaton rolling from the static point to the minimum of its potential. Because the static solution is stable whilst the false vacuum persists, the required evolution occurs for a wide range of initial conditions. As the exterior of the bubble is perfect de Sitter space, there is no problem with fields rolling outside the bubble, as in one of the related models considered by Linde and Mezhlumian, and the expansion rates before and after tunnelling may be similar which prevents problematic high-amplitude super-curvature modes from being generated. Once normalized to the microwave background anisotropies seen by the COBE satellite, the viable models form a one-parameter family for each possible Ω0\Omega_0.Comment: 7 pages RevTeX file with three figures incorporated (uses RevTeX and epsf). Also available by e-mailing ARL, or by WWW at http://star-www.maps.susx.ac.uk/papers/early_papers.htm

    Galactic periodicity and the oscillating G model

    Get PDF
    We consider the model involving the oscillation of the effective gravitational constant that has been put forward in an attempt to reconcile the observed periodicity in the galaxy number distribution with the standard cosmological models. This model involves a highly nonlinear dynamics which we analyze numerically. We carry out a detailed study of the bound that nucleosynthesis imposes on this model. The analysis shows that for any assumed value for Ω\Omega (the total energy density) one can fix the value of Ωbar\Omega_{\rm bar} (the baryonic energy density) in such a way as to accommodate the observational constraints coming from the 4He^4{\rm He} primordial abundance. In particular, if we impose the inflationary value Ω=1\Omega=1 the resulting baryonic energy density turns out to be Ωbar0.021\Omega_{\rm bar}\sim 0.021. This result lies in the very narrow range 0.016Ωbar0.0260.016 \leq \Omega_{\rm bar} \leq 0.026 allowed by the observed values of the primordial abundances of the other light elements. The remaining fraction of Ω\Omega corresponds to dark matter represented by a scalar field.Comment: Latex file 29 pages with no figures. Please contact M.Salgado for figures. A more careful study of the model appears in gr-qc/960603

    Symmetric vacuum scalar--tensor cosmology

    Get PDF
    The existence of point symmetries in the cosmological field equations of generalized vacuum scalar--tensor theories is considered within the context of the spatially homogeneous cosmologies. It is found that such symmetries only occur in the Brans--Dicke theory when the dilaton field self--interacts. Moreover, the interaction potential of the dilaton must take the form of a cosmological constant. For the spatially flat, isotropic model, it is shown how this point symmetry may be employed to generate a discrete scale factor duality in the Brans--Dicke action.Comment: 10 pages, latex, To appear in Class. Quantum Gra

    Open Inflation With Scalar-tensor Gravity

    Get PDF
    The open inflation model recently proposed by Hawking and Turok is investigated in scalar-tensor gravity context. If the dilaton-like field has no potential, the instanton of our model is singular but has a finite action. The Gibbons-Hawking surface term vanishes and hence, can not be used to make Ω0\Omega_0 nonzero. To obtain a successful open inflation one should introduce other matter fields or a potential for the dilaton-like fields.Comment: 10 pages.1 figure. Some comments and references are improved. to be published in PR
    corecore